Monday, February 4, 2013

TISK Problems

- 1. Simplify completely: $\frac{4x+8}{2x}$
- Write the equation of a line in slope-intercept 2. form that passes through the point (4,9) and is -1perpendicular to the line $y = \frac{4}{3}x + 2$.
- Name two angles congruent to angle 1; give a 3. theorem or postulate that justifies your answer.

Graded Work

Chapter 7 Test

- o 9A
 - Class Average: 70.8%
 - Class Median: 73.8%
 - Highest: 98.8%
 - Lowest: 27.6%
- o 9B
 - Class Average: 84.6%
 - Class Median: 82.7%
 - Highest: 100% Lowest: 70%

Homework Check

1.	S	7.	d = 14, C =
2.	$\overline{SR}, \overline{SM}, \overline{ST}$	8.	d = 37.08,
3.	\overline{RT}		r = 18.54
4.	\overline{XY} or \overline{RT}	9.	r = 16.2, C
5.	SM = 4.1	10.	$r = \frac{9}{\pi}, d = \frac{9}{\pi}$
6.	Yes, $\overline{SR} \cong \overline{SM}$	11.	$C = 8\pi$ cm
	because they're	12.	$C = 13\pi$ cn
	radii in the same	13	$C = 6\pi\sqrt{2}$
	01010.		

= 14π	
$= 32.4\pi$	
$\frac{18}{\pi}$	
n	
cm	

KLN Semi, circle

Definitions, Properties, Theorems, & Postulates

- Central Angle An angle whose vertex is on the center of the circle. 0
- Property of Central Angles A central angle's measure is equal to the measure of its intercepted arc.
 Sum of Central Angles
- Theorem
- The sum of the measures of the central angles of a circle is 360°.
- Arc Addition Postulate Same as Segment or Angle Addition Postulates! Any arc is equal to the sum of its components.

 $mAC = m \angle ABC$

Theorem

 In the same circle, or in congruent circles, two arcs are congruent if and only if their corresponding central angles are congruent.

Arc Length

- Arcs have both measure and length.
 - The measure is in degrees.
 - The length is in distance units.
- The length of an arc is defined as a fraction of the circle's circumference.
 - Let r = radius and d = the arc's measure Then, $\ell =$ the length of the arc.

$$\circ \ \ell = \frac{d}{360^{\circ}} (2\pi r)$$

Example

Find the length of *QR* given ⊙*P*, *PR* = 9 and *m∠QPR* = 120°.

